S & /7_3' 7

(NASA-CR~161759) ADVANCED N81-23185
OXYGEN~HYDROCARBON RQCKET ENGINE STUDY

Bimonthly Technical Progress Report, 1 Apr.

- 30 May 1980 (Aerojet Liquid Racket Co.) Unclas

63 p HC AO4/MF AO1 CSCL 21H G3/720 24074

Advanced d)iyg‘ehw-"-‘i-lydrocarbon
. Rocket Engine Study

Contract NAS 8-33452 a
Bi-Monthly Progress Report 33452-M-4
June 1980 ° L LN

. . M
] ‘ : R N
4 ot . e

. " i

Prepared For:

National Aeronautics And Space Administration
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

4
<

A
By: s : .‘\.,;‘ ,‘ s
C. J. O’'Brien 4‘f R
S
\ .
‘ ) ;
Aeroet
Liquid Rocket

Company

'Hu.h&-" SSRGS NP W




AOVANCED OXYGEN - HYDROCARRON ROGKET
' . ENGINE STUDY

CONTRACT NAS 8-33452
Bi-Monthly Technical Progress Narrative 33452 M-4
10 June 1980

Prepared For

National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

Prepared by: Approved by:

) , | _{ (/
ég-, .._C%‘_&:« - e
C. J40'Brien J. W. Salmon
Projéct Engineer Program Manager
ALRC Engineering ALRC Programs

AEROJET LIQUID ROCKET COMPANY
P.0. Box 13222
Sacramento, California 94813

- - o Lo e, . o de e s o .. o
. v ove e e s e - .



il ekt e 7

e L

"‘|‘,,|‘_':/i‘=:’1,3b1'; Y

T

Ui,

NI

F T b o e U

FOREWORD

This 1s the fourth bi-monthly progress report submitted for the Advanced
Oxygen - Hydrocarbon Rocket Engine Study per the requirements of Contract
NAS 8-33452, The work is being performed by the Aerojet Liquid Rocket Com-
pany for the NASA-Marshall Space Flight Center. The contract was issued on
15 October 1979. The program inclusive dates for period of performance are
15 October 1979 through 15 Fcbruary 1981. This report covers the period from
1 April 1980 to 31 May 1980.

The program consists of parametric analysis and design to provide a
consistent engine system data base for defining advantages and disadvantages,
system performance and operating limits, engine parametric data, and tech-
nology requirements for candidate high pressure L02/Hydrocarbon engine systems.

The NASA-MSFC Project Manager is Mr. R. J. Richmond. The ALRC Program
Manager is Mr. J. W. Salmon and the Project Engineer is Mr. C. J. O'Brien,

Contributor to this bi-monthly report is:

R. Salkeld - Vehicle Trajectory Performance Assessment
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1. INTROBUCTION

In the decade of the 1980's and beyond, the nation's expanding space
operations may require an improved surface-to-orhit. transportation system
using advanced booster vehicles which have increased performance and capa-
hility compared to the current space shuttle concept. Tho mixed-mode pro-
pulsion principle clearly indicates the potential performance advantages of
using high density-impulse rocket propeltants in such larqge AV applications.
For this reason, hydrocarbon fuels exhibiting increased density relative
to liquid hydrogen (LHQ). at the penalty of lower specific impulse, are being
considered for the booster propulsion system of space shuttle improvements
and derivatives as well as for single-stage-to-orbit and two-stage-to-orbit

heavy-payload vehicles.

Preliminary identification and evaluation of promising liquid oxygen/
nydrocarbon (LOZ/HC) rocket engine cycles is desirable to produce a consistent
and reliable data base for vehicle optimization and design studies, to demon-
strate the significance of propulsion system improvements, and to select the
critical technology areas necessary to realize such advances.

It is the purpose of this study to generate a consistent engine system
data base for defining advantages and disadvantages, system performance and
operating limits, engine paranetric data, and technology requirements for
candidate high pressure L02/HC engine systems. The study will also synthesize
op timum L02/HC engine power cycles and generate representative conceptual
engine designs for a specified advanced surface-to-orbit transportation system.

To accomplish the program objectives. the study is composed of four
major technical tasks and a reporting task. These tasks and summarized ob-

jectives ave:
A. TASK 1 - ENGINE CYCLE CONF IGURATION DEFINITION

Formulate and assess tamilies of high chamber pressure LOZ/HC

engine cycles.
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I, Introduction (cont,)
8. TASK 11 - ENGINE PARAMETRIC ANALYSIS

Genorate performance, weight, and envelope parametric data fov
viable concepts based upon historical data and conceptual cvaluations,

C. TASK II1 - ENGINC/VEHICLE TRAJECTORY PLCRIURMANCE ASSESSMENT
(ENGINE SCRCENING)

Conduct a preliminary comparison of selected engine cycles utilizing
a simplified vehicle trajectory performance model,

Do TASK TV - BASTLINC UNGINE SYSTIMS DUFINITION

Prepare preliminary designs of two baseline engine configurations.
Conduct heat transfer, turbomachinery, combustion stability, structural, and
controls analysis of the baseline engines and components. Conduct a parametric
sensitivity analysis including the effects of turbine temperature and number
of usable 1ife cycles. Provide the appropriate data in a format suitable for
use in vehicle application analyses.

E. TASK V - REPORTING

Provide informal bi-monthly technical and fiscal progress reports,
hold program reviews at NASA/MSFC and prepare a final report.

IT.  TECHNICAL PROGRESS SUMMARY

The overall progress on the program is indicated in Figure 1.

ra
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Ty Technical Discussion (cont,)

A. TASK T~ INGINE CYCHE CONFTGURATION DITINTTION
1, Cycle Powor Balance

Powor Datance data wore qencrated for the eleven engine
cycles qiven in Table [y utilizing the parametric heat transfor and
performance data sumnarizod in Bi-Monthly Progross Roport 33457M-3,
The cyelos labelled A through 1y as shown in [ lgure . are those spectfiod
by the contract., Cycles 3 and K were selocted as the most pmromieing addit-
fonal candidates from the preliminary power cycle studies previously conductoed
and summarized in B1-Monthly Progress Report 33450M-p,

Endine specification datd based on the parametric performance
dala are given in Tables T and 11, These data were used for the powor
balance evaluation of staged combustion cycle engines and the thrust chambers
ot open-Toop (e.g., gas generator) cycle engines., In many cases, power
balances were not achieved at the higher chamber pressures (Pe = 3000 to
5000) due to cooling Timitations. The power cycle data are summarized in
Table 1V, and are interpreted in the following paraqraphs.

a. Cycle A

The schematic for engine cycle A is given in Figure 3.
The results from the power balance analysis are summarized in Figures 4
and 5. Calculations were initially made from coolant pressure drop data
obtained by assuming no carbon deposit on the hot gas-side chamber wall,
and by assuming a maximum local coolant-side wall temperature of 550°F,
the coking (or decomposition) temperature for MIL Spec RP-1, With no carbon
deposition, the RP-1 coolant pressure drop at a chambey pressure of 1000 psia
and an engine thrast level of 200,000 1bf is 1600 psia. Since it would
not be possible to achieve an engine power balance with RP-1 at much higher
chamber pressures (see Figure 4), deoxyaenated and purified RP-1 was utilized
in most of the calculations. The purified fuel is simildar to JpP-5 which
has a decomposition temperature of 8007,
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NESTGNATION

TARLE 1
ENGINE CYCLE PESCRIPTION

PROPFLLANTS COOLANT CYCLE TYPE
LOP/RP"T RP=1 RP=1 fuel=rich (I'R) gas
. generator (GG)
LOZ/RP~1 LOZ RP-1 FR GG
LOz/LCH4 LCH4 LCHa FR GG
LOQ/Rpul RP-1 RP=-1 FR preburner (PB) staged
combustion (SC)
LOQ/RP~1 L02 RP-1 FR PB SC
LOQ/RP~1 RP-1 LOZ oxidizer-rich (OR) PR SC
L0?/Rp~1 LO2 LOQ OR PB SC
L02/LCH4 LCH4 LCH4 FR PR SC
L02/LCH4 LCH4 FR and OR pPB SC
LOz/RP~1 LHz LH2 FR GG
L02/LCH4 tgﬁ and BHZ FR GG and 2 OR PB SC
4 ual Throat
5
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LO,/RP=1 THRUST CHAMBER ASSEMBLY SPECIFICATION DATA

PARAMETER

Chamber Pressure, psia
Thrust, s1, 1bf
Thrust, vac, 1bf
Mixture Ratio

Area Ratio

ODE Is, s1, sec

ODE Is, vac, sec

Is Efficiency, %(V)
Deliv. Is, sl, se¢
Deliv. Is, vac, sec
Total Flowrate, 1b/s
L02 Flowrate, 1b/s
Fuel Flowrate, 1b/s
c*, ft/s

Throat Area, in
Throat Diam., in.
Exit Area, in2
Exit Diam., in

Exit Pressure, psia

2

TABLE 11

5000
600,000
662,617
2.8
61.7
334.4
368.1
96.7
322.3
355.9
1861.62
1371.72
489.90
5958
69.10
9.38
4259
73.6
6.0

4000
600,000
666,433
2.8
51.9
330.7
365.9
96.6
318.2
353.4
1885.61
1389.39
496.21
5945
86.92
10.52
4520
75.9
6.0

3000
600,000
671,605
2.8
41.3
325.3
362.5
9.4
312.2
349.4
1921.84
1416.10
505.75
5922
118.05
12.26
4876
78.8
6.0

2000
600,000
679,365
2.8
29.8
313.6
363.7
9.8
302.4
342.4
1984.13
1461.99
522.14
5897
181.8
15.21
5418
83.1
6.0

1000
600,000
695,618
2.8
17.2
293.5
339.5
96.7
283.0
328.1
2120.14
1562.21
557.93
5850
385.5
22,15
6631
91.9
6.0

e
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10,/LCH, THRUST CHAMBER ASSEMBLY SPECIFICATION DATA

PARAMETER

Chambor Pressure, psia

Thrust, s, 1bf
Thrust, vac, 1bf
Mixture Ratio

Area Ratio

ODE Is, sl, sec

ODE Is, vac, sec

Is Efficiency, %(V)
Deliv. Is, si, sec
Deliv. Is, vac, sec
Total Flowrate, 1b/s
L02 Flowrate, 1b/s
Fuel Flowrate, 1b/s
c*, ft/s

Throat Area, in
Throat Diam., in
Exit Area, 1n2

2

Exit Diam., in
Exit Pressure, psia

TARLE 111

5000
600,000
665,090
3.5
63.9
343.1
378.8
96.4
329.6
365.3
1820.39
1415.86
404.53
6119
69.2
9.39
4425
75.1
6.0

4000
600,00r
668,416
3.5
53.2
338.3
375.4
96.6
325.4
362.5
1843.88
1434.13
409.75
6107
87.5
10.56
4655
77.0
6.0

3000
600,000
673,553
3.5
42.2
332.4
an.e
96.5
319.4
358.5
1878.52
1461.07
417.45
6088
118.5
12.28
5000
79.8
6.0

2000
600,000
682,193
3.5
30.5
321.5
363.8
96.7
309.4
351.7
1939.24
1508. 30
430.94
6063
182.7
15.25
5573
84.2
6.0

1000
600,000
700,698
3.5
17.6
301.2
349.8
96.5
289.0
337.5
2076.12
1614.76
461,36
6017
388.3
22.24
6833
93.3
6.0
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Figure 3, RP-1 Fuel-Rich Gas Generator Cycle (A) RP=1 Cooled
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1Ty Ay Task T - ngine Cycle Configuration Delinition (cont.) *

The conclusions vevealed by Figure 4 ave as follows:
(1) MIL Spec RP-1 cooled engines (curve b)) are limited to a chamber pressure
slightly above 1000 psia when there 1s no carbon deposit on the wallg
(2) MIL Spec RP-1 cooled enqines can achicve a chamber pressure 1n oxcess
af 2000 psia (curve 3) 1 a unito.om carbon deposit is maintained on the
chamber wallsy (3) a puri€iad RP-1 cooled engine (curve 2) 1s limited to a
chamber prossure slightly in excess of 2500 psia without a carbon deposity
and (8) purified RP-1 cooled engines can achieve a chamber pressure (curve 1)
in oxcess of 3000 psia if a carbon deposit is on the chamber wall,

The performance for the variasus cycle A engines is depicted
in Figure 5, compared with a staged ¢ wbustion cycle engine (see Table II).
The conclusions to be reéached in examining Fiqure 5 are: (1) a carbon deposit

slightly influences (increases) the performance of the LO?/RP-] qas gencrator
cycle oengine (due to a reduction in gas generator flowrate): (2) the turbine
inlet temperature has a large offect on gas denerdator engine performance

(due to the variation in gas generator flowrate).

b. €ycle B

Cycle B differs from Cycle A in that LO, is used as the fzi
coolant, The schematic is given in Figure 6. The power balance results
are summarized in Figures 7 and 8.

Figure 7 shows the significant benefit of using L02,
rather than RP-1, as the coolant. If the 1980 state-of-the-art of rocket
enyine turbopumps is assumed to be 8,000 psia pump discharge pressure, then
an is capable of cooling a LOZ/RP-l engine with a chamber pressure of

. 4,000 psia (curve ). When a4 carbon deposit is assumed, LO, is capable of
. cooling an engine with a chamber pressure of about 4.400 psia (curve 1).

Simitar trends in performance dare shown in Figure 8,
as were seen in Figure b5, A carbon deposit provides a small increase in
< performance {about 1 second), dand an incredsed turbine inlet temperature
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Figure b. RP-1 Tuel-Rich Gas Generator Cycle (R) LO,, Cooled




PUMP DISCHARGE PRESSURE REQUIREMENTS
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= Figure 7. LO,/RP-1 Engine Cycle B Pump Discharge Fressure Requirements
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I, Ay Task T~ Enqgine Cyele Contfiguration Definition (cont,)

chows g Tavae increase in performance (from 4 ta 12 seconds),  TL should also
he naticed that the uncoated chamber reaches 1t maximum performance at

a chamber pressure of about 3000 psia, A carhon doposit and/or an increase
in tuebine inlet temperature are seen to shift the maximum performance to
higher chamber pressures,  The same trond 1s indicated in Fiqure 6 for the
RP=1 canled qas genevator cyclo engine,

¢, Cycle €

Power balance data for the methane eooled gas generator
cycle shown dn Flgure 9 are summarized in Figures 10 and 11, For an
assumed pump discharge pressure Timit (1980 state-of-the-art) of 8000 psia,
¢ methane-cooled gas generator cycle enaine is Timited to a chamber pressure
of 4300 psia. A carbon deposit on the chamber wall, as seen for cycles A ,
and B, would allow an even higher chawber pressure, ‘

Performaace data for three turbine inlet temperatures
are given in Figure 11, The initial increase in turbine inlet temperature
from 1860 to 2260°R offers an incredse in performance of about 4 seconds.
Further increase in temperature to 2960°F is seen to give only about one
second in additional cngine performance.

d. Cycle D

" The schematic for the LO,/RP-1 staged combustion cycle D
- is given in Figure 12. The power balance data are summarized in Figure 13.
Since the staged combustion cycle is a closed loop cycle, all its variations %
de’iver the same performance. The performance data have previously been

A summarized (cf. Figures 5 and 8 and Table I1). )
=% @

The LOQ/RP~1, RP-1 cooled, staged combustion cycle is
seen in Figure 13 to be limited to chamber pressures between 2500 and
3300 psiay 1 an upper Tinit of 8000 psia pump discharge pressure is
assumed,

it b

L
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Figure 9. LCH, Fuel-Rich Gas Generator Cycle (C) LCH, Cooled
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NO CARBON DEPOSIT ASSUMED
CH, COOLED, CHy RICH GAS GENERATOR
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Figure 10. LOQ/LCHQ Engine Cycle C Pump Discharge Pressure Requirements
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L0, N RP- |

0 - OXIDIZER PUMP
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Figure 12, RP-1 Fuel-Rich Preburner Staged Combustion Cycle (D) RP-1 Cooled
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4 Figure 13. LO(L‘/RP'I Cngine Cycle D Pump Discharge Pressure Requirements




v Ay Task 1 - Engine Cycle Confiqueation Pefinition (cont,)

e, Cycle E

Cycle E (Figure 14) differs from cycle D by utitizing lnq ay
the coolant rather than RP-1 or purified RP-1. A modest increase in chnmbur
pressure from 2600 (curve 1, Figure 13) to 2900 psia (curve 1, Figure 15),
is achioved by changing coolants., The offects of carbon deposit and turbine
inTet temperature are also indicated in Figure 16,

f. Cycle F

Cycle F differs from cycle D in the use of a LOq rich
preburner in place of the RP-1 rich preburner. The cycle schemat1a is
depicted in Figure 16 and the power balance sunmary is given in Figure 17,
The required pump discharge pressures for the three staged conmbustion
cycles (cycles Dy £ and F) at a chamber pressure of 2500 psia arve:

ngle ™ Loolant Preburner
D 8200 RP- 1 RP-1 rich
£ 5800 LO? RP-1 rich
F 5100 RP-1 L0, wich

The LO, rich preburner because of its high mass flow provides more horsepower
[
resulting in a lower pump discharge pressure requirement.

The influence of carbon deposit and turbine inlet temper-
ature were not computed ftor this cycle. The effect of these variables
should be similar to that previously shown.

qg. Cycle G

The utilization of both a lO, rich preburner and LO
cooling is indicated in the schematic (Figuee 18) for Cycle G, LO /RP 1
staged combustion cycle, Figure 19 presents the power balance rosu]ts
for this cycle. At a chamber pressure of 2hog psia. the pump discharge
pressure requirement is 5200 psia (similar to that tfor cyele FY.  The maximum
chamber pressure aliowed by this cycle is $tho psia 3t a punp discharge
limit of 8000 psia (1980 state-of-the-art) is assumed.

‘e
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L0, _ RP- |
0 ~ Fo|
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Figure 14. RP-1 Fuel-Rich Preburner Staged Combustion Cycle (E) LO, Cooled
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Figure 16. L02/§P-1-0xidizer-R1ch preburner staged Combustion Cycle (F) RP-1 Cooled |
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PUMP DISCHARGE PRESSURE REQUIREMENTS
RP-1 COOLED, LO, RICH PREBURNER

F = 600K 1bf L0, COOLED NOZZLE
PURIFIED RP-1: Twc = B00°F
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Figure 17. LOZ/RP-I Engine Cycle F Pump Discharge Pressure Requirements
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Figure 19. L02/RP~1 Engine Cycle G Pump Discharge Pressure Requirements
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11, A, Task 1 - Engine Cycle Configuration Definition (cont.)

The offect of a chamber wall carbon deposit and of a
higher turbine inlet temperature are also shown in Figure 19 at a chamber
pressure of 4000 psia, The state-of-the-art turbine inlet temperature
for rocket ongine oxidizer-rick preburners is 1218°F (1678°R) at a pressure
of 4566 psia based on the ARES proaram (Belchel, R.. "Advanced Rocket
Engine ~ Starable", Aerojet-General Corporation Report AFRPL-TR-67-76,
Contract AFOA(G611)-10830, August 1967), However, an advanced ARES program
(Kuntz, R.J., Sjogren, R.G., ct al., "Advanced Propellant Staged-Combustion
Feasibility Program", Aerojet-Gencral Corporation Report AFRPL-TR-67-204,
Contract AF04(611)-10785, September 1967) utilized an oxidizer-rich
monopropellant (98% Heoz) preburner (no turbine) operating at 4500 psia
and 1780°F (2240°R). Since the upper limit of feasible oxidizer-rich
turbine-inlet temperatures has not been cstablished, a temperature of
2600°R was selected for the one example shown in Figure 19.

The conclusions to be made concerning staged combustion
cycles D through G are: (1) an oxidizer rich preburner offers a significant
improvement (lower pump discharge pressures lead to longer life turbopumps ) ;
(2) LO2 cooling significantly reduces the pump discharge pressure require-
ments of a fuel-rich preburner cycle; and (3) higher turbine inlet temper-
atures can lead to a lower pump discharge pressure (longer 1ife) and/or
to a higher chamber pressure.

h. Cycle H

The schematic for the L02/LCH4 staged combustion cycle H
is shown in Figure 20. The schematic is identical to that for cycle D,
with methane replacing RP-1, The results of the power balance analysis
are summarized in Fiqure 21,

1f a pump discharge pressure limit of 8000 psia is assumed
to be 1980 state-of-the-art, the chamber pressure limit for cycle H is
3000 psia (see Figure 21). This limit is increased to 3800 psia if the
turbine inlet temperature can be increased to 2500°F (2960°R).

33

05 0o

!
)




0 - OXIDIZER PUMP
F = FUEL PUMP

T « TURBINE

PP « PREBURNER.

Figure 20. LCH4 Fuel-Rich Preburner Staged Combustion Cycle (H) LCH4 Cooled
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1, A, Task I - Engine Cycle Confiquration Definition (cont.)

No calculations were made for cycle H assuming a carbon
deposit on the chamber wall, Although some deposit will probably exist,
it is expected to pe much Vighter than that found from the combustion
of L02 and RP-1,

i. Cycle 1

Cycle 1 differs from cycle W in the addition of an oxidizer-
rich preburner, as shown in Figure 22. The power halance data are summarized
in Figure 23, The chamber pressure limit is seen to be 3500 psia (curve 1
in Fiqure 23) compared to 3000 psia (curve 1 in Figure 21). The benefit
of the addition of an oxidizer-rich preburner to cycle H is directly
translatable into a performance increase of 3.2 seconds (sea level) and
2.3 seconds (vacuum) because of the chamber pressure increase to 3500 psia.

The influence of turbine inlet temperature is indicated
in the figure at a chamber pressure of 4000 psia. A large increase in the
fuel-rich turbine inlet temperature (to 2960°R) significantly lowers the
fuel pump discharge pressure. However, if the oxidizer-rich turbine
inlet temperature is maintained constant at 1660°R (as shown in Figure 23),
the reduction in flow through the oxidizer-rich turbine resuits in a higher
LO2 pump discharge pressure (curve 6) corresponding to the lower fuel
discharge pressure (curve 5). A modest increase in fuel-rich turbine inlet
temperature (curves 3 and 4) is, therefore, preferable in this case.

J. Cycle J

The schematic for a LH, cooled, LI, fuel-rich gas generator,
(" [ =
LO?/RP-l engine cycle is depicted in Figure 24. The results from the power
balance analysis for this cycle are summarized in Fiqures b and 26.

Cycle J is capable of generating a chamber pressure of
5000 psia at a pump discharge (6700 psia) well below the 8000 psia 1980
state-of-the-art value. The delivered performance for the engine slightly
exceeds that for a staged combustion LU?/RP-I engine because of the addition
of the "2 fuel-rich turbine exhaust in the thrust chamber nozzle.
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Figure 23. LOQ/LCHa Engine Cycle I Pump Discharge Pressure Requirements
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ry Figure 24. LO,/RP-1 Engine Fuel-Rich LH, Gas Generator Cycle (J) LH2 Cooled
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Figure 25, LOQ/RP-I + LH, Engine Cycle J Pump Discharge Pressure Requirements
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11, A, Task T - tngine Cycle Configuration Definttion (cont.)
k. Cycle K

A LOQ/LCH4 dual-throat engine schematic 1s shown in
Figure 27. This engine utilizes both LH? and L(‘.H4 as coolants and both an
oxidizer-rich preburner and a H2 fuel-rich gas generator. The cycle shown
in the schematic 1s representative of this class of engines, but a detailed
heat transfer and thrust split analysis is required to fully optimize this
type of engine for a two-stage mission. Sufficient data exist for similar
tripropellant engines (0'Brien, C.J., "Dual-Fuel, Dual-Throat Engine Pre-
liminary Analysis," Aerojet Liquid Rocket Company Report 32967F, Contract
NAS 8-32967, August 1979) to allow power balance and performance analysis of
this bipropellant engine with a hydrogen-rich gas generator drive. The
specification for cycle K is given in Table V.

1.  Thrust Level Variation

The parametric heat transfer data generated in Task I
and the parametric performance data generated in Task Il show some variation
with thrust level from 200,000 to 1,500,000 1bf. Some of this variation is
real and some is the result of approximations used in the parametric scaling
relationships required to facilitate the generation of a wide variety of
design data.

Past experience has shown that engine cycles can be rated
at a given thrust level (e.g., 600,000 1bf) and that the rating will be
valid for other thrust levels (i.e., 200,000 to 1,500,000 1bf). To validate
this premise, power balance calculations were made for cycle € at thrust
levels of 200,000, 600,000 and 1,500,000 1bf. The results are given in
Table IV, The following table summarizes the pertinent data.
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Chamber Pump NDischyg, Sea Level Vacuum
Thrust Pressure Pressure Is Is
(bf) (psta)  _ (psia) (sec, ) (sec.)
200,000 4000 7030 316.8 363,56
600,000 A000 6921 316.5 354.1
1,500,000 4000 7662 316.5 3541

It is seen that there is little variation in the performance of the engines
over this wide range of thrust level. There is a variation in pump dis-
charge pressure of the order of 10 percent, but some of this variation can
be reduced through thrust chamber design changes to reduce the coolant
pressure drop.

TABLE V

LOZ/LCH4 ENGINE CYCLE K SPECIFICATION

PARANLTER MODE I MODE_11
Sea Level Thrust, LBI 610,745 .-
Vacuum Thrust, LRF 685,270 225,960
Sea Level IS, sec 319.0 --
Vacuum Is, soc 357.9 380.2
Mixture Ratio (L02/LCH4) 3.5 3.5
Mixture Ratio (LOZ/LHZ) 0.8 0.8
Chamber Pressure, psia 280074000 4000
Area Ratio 42 187
TCA Sea Level Is, sec 320.9 --
TCA Vacuum Is, sec 359.3 383.6
GG Sea Level ls, sec 238.8 -
GG Vacuum Is, sec 300.7 338.1
Flowrdte, 1b/scc 1914.61 594,36
TCA L02 Flowrate, Ib/sec 1454, 14 427.28
TCA LCH4 Flowrate, 1b/sec 415.47 122.08
GG LO? Flowrate, 1b/sec 20.00 20.00
GG LM, Tlowrate, W/sec 25,00 25.00
Throat Arca, in® 116,22 26.06
Exit Area, in’ 4869, 72 4869.73
Exit Pressure, psia 7.3 1.5
LCHa Pump Dischy. Pressure, psia 7429 7429
Lo, Pump Dischg, Pressure, psia 429 7429
LH? Pump Dischg. Pressure, psia 1685 1655
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Il, A, Task 1 - Engine Cycle Configuration Definition (cont.)

2. Engine Cycle Rating System

Engine cyele rating parameters wore established as shown in {
Table VI. The desired condition and the effect of the parameter on the engine ‘
and/or vehicle are listed in the table. Both low and high temperature
turbines are listed as desirable, in view of the fact that this study
indicates a sfgnificant benefit of a high turbine temperature on some cycles.

The thamber pressure ranking of the cycles is given in Figure i‘
28. The ranking is based on an upper limit of pump discharge pressure of '
8000 psia, the assumed 1980 state-of-the-art. The ranking is also based
on 1980 state-of-the-art fuel-rich and oxidizer-rich turbine temperatures
of 1860 and 1600 °R, respectively. The L02-, LCH4-. and LHz-cooled cycles
(8,C,G,1,J and K) are seen to have the highest chamber pressure potential.

The chamber pressure ranking from Figure 28 can be converted
into a performance ranking for the cycles, as shown in Figure 29. The
performance values show less variation due to the high delivered performance
for the staged combustion cycles, even at lower chamber pressures. The
cycle with the highest performance potential is seen to be the dual throat ‘
cycle. The variable geometry (without moving parts) allows the achievement '
of a high performance at altitude.

2o mabee

Although preliminary designs are not available for each
of the various cycles, an estimate of the component weight differences
was made. These differences are reflected in the engine weight ranking
depicted in Figure 30. Based on simplified trajectory analyses to be »
discussed in Section II.C these weight differences do not significantly
influence the two-stage vehfcle payload.
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11, A, Task 1T -~ Ingine Cycle Configuration Definition (cont.)

The onvelope vanking for the engine eyelos ts given in
Figuree 31, Despite the wide difforence in chamber pressures (Peo- 2600
to K000 psia), there is only a amall difference in engine dimensions.

An engine cycle rating system was ostablished based on
the previously shown results and the Cngine/Vehicle Trajectory Performance
Assessment given in Section 11.C. The rating system is shown in Table VII.
The highest rating points were given to enaine performance with a value of
6 points assigned to a specific impulse of 350 seconds. Qne point was
assigned to an engine weight of 5000 pounds.

Chanber pressure was viewed as a life cycle influencing
parameter, and, as such, lower pressures were awarded higher points.
A nominal chamber pressure of 3000 psia was assigned 2 points. Hydrocarbon
cohing was envisioned as an unacceptable comiodity. No coking, therefore,
was assigned 3 points.

Interpropellant seals in turbomachinery require large
amounts of inert gas, such as helium. Therefore, 3 points were assigned to
a cycle without the requirement of an intevpropellant seal. A shift in
mixture vatio from the optimum value, such as vequirved by gas generator
cycles was penalized slightly, with the optimum mixture ratio assigned one
point.  Coolants such as LO? and LCHQ were assigned O points and LH2 coolant
was assigned 3 points.  The questionable coolant fP-1 was given one point,

sunmation of the points assigned vach cycle parameter leads
to the rating given in Table Vi1, The dual throat cycle (J) becduse of its
high performance, no interpropeliant seal, and other features rates highest
of all the cycles, CGlose vompetitors are cycles G through J.
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11, Technical Discussion (cont.)
B. TASK Il - ENGINE PAPAMETRIC ANALYSIS

Documentation of the results of this task was completed as scheduled.
The results were previously reported in Bi-Monthly Progress Report 33452M-3.

C. TASK III - ENGINE/VEHICLE TRAJECTORY PERFORMANCE ASSESSMENT

Based on recommendations from C. H. Eldred (NASA/Langley Research
Center) the baseline two-stage vehicle proposed in Bi-Monthly Progress Report
33452M-2 was not utilized in the simplified trajectory analysis of this study.
The two-stage vehicle utilized was taken from NASA/DOE Satellite Power Station
studies ("Satellite Power System, Concept Development and Evaluation Program,"
Reference System Report DOE/ER-0023, October 1978). The characteristics of
four NASA/Johnson Space Center configurations are given in Figure 32, compared
with a Saturn V. The LOZ/RP~1 booster from Figure 32 delivering a 454 metric
ton (1,000,900 1bm) payload was utilized in this study.

For LOZ/RP-1 engine cycles with thrust-to-weight ratios from
90 to 150, the following data apply:

TT. 0 - 7.7 metric ton/second (17,000 1bm/s)
These results indicate the importance of engine performance

(specific impulse) for the first stage of the heavy 1ift vehicle and show the
relative insensitivity of payload to engine wefght for the two-stage vehicle.
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I1. €, Task III - Engine/Vehicle Trajectory Performance Assessment (cont.)

The L02/LCH4 engine cycles show a similar data trend. However,
the Jower density methane causes a stage weight increase for the same gross
liftoff weight. The stage weight increase nullifies most of the performance
gain offered by the methane system. The final result is that the methane
cycles offer only a slight payload increase (if any) despite the higher
delivered performance.

D.  TASK 1V - BASELINE ENGINE SYSTEM DEFINITION
No activity scheduled.

ITI.  CURRENT PROBLEMS

Difficulty in getting the ALRC simplified trajectory program to compute
the heavy 1ift vehicle two-stage trajectories has necessitated sole reliance
on the R. Salkeld methodologies. The Salkeld methods have proven accurate
to within one percent for single-stage-to-orbit trajectories, and are expected
to provide representative results for the purposes of this study.

There will be a potential slip in the program schedule if approval
for initiation of Task IV occurs after 27 June.

IV.  WORK PLANNED
A.  TASK 1
This task is completed.
B. TASK II

This task is completed.
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IV, Work Planned (cont.)

C. TASK III

Complete documentation of this task.

D. TASK IV

Initiate this task after NASA approval.

E. TASKYV

Conduct the Task I, I1I, and II1 review on 26 June at MSFC,
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